Multilingual feature selection for a human sentence processing model

نویسندگان

  • Marisa Ferrara
  • Zhong Chen
چکیده

This study develops a connection between human parsing preferences and feature selection rankings in a multilingual dependency parser. The results reveal that feature weights reflect the typological characteristics of three languages. Accounting for these differences leads to greater precision in modeling garden path data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of effort estimation accuracy in software projects using a feature selection approach

In recent years, utilization of feature selection techniques has become an essential requirement for processing and model construction in different scientific areas. In the field of software project effort estimation, the need to apply dimensionality reduction and feature selection methods has become an inevitable demand. The high volumes of data, costs, and time necessary for gathering data , ...

متن کامل

A New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier

With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...

متن کامل

Text-Dependent Multilingual Speaker Identification using Learning Vector Quantization and PSO-GA Hybrid Model

---------------------------------------------------------------------***--------------------------------------------------------------------Abstract In this work a multilingual speaker identification system is proposed. The feature extraction techniques employed in system extract Mel frequency cepstral coefficient (MFCC), delta mel frequency cepstral coefficient (DMFCC) and format frequency. Th...

متن کامل

Text-Dependent Multilingual Speaker Identification using Back Propagation Neural Network and PSO-GA Hybrid Model

In this work a multilingual speaker identification system is proposed. The feature extraction techniques employed in the system extract Mel frequency cepstral coefficient (MFCC), delta mel frequency cepstral coefficient (DMFCC) and format frequency. The feature selection is done using hybrid model of particle swarm optimizatiom (PSO) and Genetic Algorithm (GA). We have used Back Propagation (BP...

متن کامل

Feature Selection in Structural Health Monitoring Big Data Using a Meta-Heuristic Optimization Algorithm

This paper focuses on the processing of structural health monitoring (SHM) big data. Extracted features of a  structure are reduced using an optimization algorithm to find a minimal subset of salient features by removing noisy, irrelevant and redundant data. The PSO-Harmony algorithm is introduced for feature selection to enhance the capability of the proposed method for processing the  measure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008